A generalised multiple mapping conditioning approach for turbulent combustion
نویسندگان
چکیده
This paper follows the evolution in understanding of the multiple mapping monditioning (MMC) approach for turbulent combustion and reviews different implementations of MMC models. As the MMC name suggests, the original version represents a consistent combination of CMC-type conditional equations (conditional moment closure) and generalised mapping closure. It seems that the strength of the MMC model, and especially that of its stochastic version, lies in a more general (and much more transparent) interpretation. In this new generalised interpretation, we can replace complicated derivations by physical reasoning and the model appears to be a natural extension of modelling approaches developed in recent decades. MMC can be seen as a methodology for enforcing certain known characteristics of turbulence on a conventional mixing model. This is achieved by localising the mixing operation in a reference space. The reference space variables are selected to emulate the properties of a turbulent flow which have a strong effect on reactive quantities. The best and simplest example is an MMC model which has a single reference variable emulating the mixture fraction. In diffusion flames turbulent fluctuations of reacting quantities are strongly correlated with fluctuations of the mixture fraction. By making mixing local in the reference mixture fraction space a CMC-type mixing closure is enforced. In the original interpretation of MMC the reference variables are modelled as Markov processes. Since the reference variables should emulate properties of turbulent flows as realistically as possible the next step, and the basis of generalised MMC, is to remove the Markovian restriction and set reference variables equal to traced Lagrangian quantities within DNS or LES flow fields. Indeed, no Markov value can emulate the mixture fraction better than the mixture fraction itself. (Using a Markov vector process of dimension higher than the number of conditioning variables represents a more economical alternative for producing reference variables in generalised MMC.) The generalised MMC approach effectively incorporates the mixture fraction-based models, the PDF methods and LES/DNS techniques into a single methodology with possibility of blending useful features developed previously in conventional models. The generalised approach to MMC stimulates a more flexible understanding of simulations using sparsely placed Lagrangian particles as tools that may provide accurate joint distributions of reactive scalars at relatively low computational cost. The physical reasoning behind the new interpretation of MMC is supported by example computations for a partially premixed methane / air diffusion flame (Sandia Flame D). The scheme utilises LES for the dynamic field and a sparse-Lagrangian filtered density function method with MMC mixing for the scalar field. Two different particle mixing schemes are tested. Simulations are performed using only 35,000 Lagrangian particles (of these only 10,000 are chemically active) on a single workstation. The relatively low computational cost allows the use of realistic chemical kinetics containing 34 reactive species and 219 reactions.
منابع مشابه
Matching Conditional Moments in PDF modelling of non-premixed combustion
The rate of generation of fluctuations with respect to the scalar values conditioned on the mixture fraction, which significantly affects turbulent non-premixed combustion processes, is examined in the paper. Simulation of the rate in major mixing model is investigated and the derived equations can assist in selecting the model parameters so that level of conditional fluctuations is better repr...
متن کاملThe modeling of turbulent reactive flows based on multiple mapping conditioning
A new modeling approach—multiple mapping conditioning ~MMC!—is introduced to treat mixing and reaction in turbulent flows. The model combines the advantages of the probability density function and the conditional moment closure methods and is based on a certain generalization of the mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The validity of the clos...
متن کاملKnowledge-Assisted Visualization of Turbulent Combustion Simulations
In this paper, we present a knowledge-assisted approach for studying turbulent combustion simulation data. To understand the dynamic mechanisms of extinction and reignition in turbulent flames, scientists need to validate known relationships and reveal hidden ones among multiple variables. Based on the domain knowledge and questions posted by the scientists, we have designed an algorithm that h...
متن کاملNumerical Investigation of Scaling Properties of Turbulent Premixed Flames
Gibson scaling and related properties of flame-surface geometry in turbulent premixed combustion are demonstrated using a novel computational model, Deterministic Turbulent Mixing (DTM). In DTM, turbulent advection is represented by a sequence of maps applied to the computational domain. The structure of the mapping sequence incorporates pertinent scaling properties of the turbulent cascade. He...
متن کاملStudies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement
The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...
متن کامل